On Green's function in higher order stochastic differential equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Semipositone higher-order differential equations

Krasnoselskii’s fixed-point theorem in a cone is used to discuss the existence of positive solutions to semipositone conjugate and (n, p) problems. @ 2004 Elsevier Ltd. All rights reserved. Keywords-Existence, Positive solution, Semipositone, Conjugate and (n,p) problems.

متن کامل

On boundary value problems of higher order abstract fractional integro-differential equations

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

متن کامل

Elliptic Equations of Higher Stochastic Order

This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of theWiener Chaos (Cameron-Martin) expansions. The exist...

متن کامل

Renormalization methods for higher order differential equations

We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1982

ISSN: 0022-247X

DOI: 10.1016/0022-247x(82)90218-9